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Abstract

The N-body problem is a fundamental and challenging problem in various fields such as astro-
physics, cosmology, and aerodynamics. This project aims to develop an efficient and accurate N-body
simulation system using high-performance computing techniques, such as OpenMP, OpenMPI, ISPC,
and data-oriented programming. The simulation system is based on the Cell Lists Algorithm, which
is a popularly used method for molecular dynamics simulations. The first objective of this project
is to develop a baseline code with a single process for the simulated N-body system, which can be
parallelized using OpenMP and SIMD instructions to achieve single node best performance, serving
as a benchmark for evaluation metrics. The main goal of the project is to parallelize the code using
distributed computing techniques, making the simulation system more efficient and scalable for large-
scale simulations on a computing cluster. The innovative aspect of this project is its ability to precisely
pack an unfixed number of cells, each containing an varying number of particles, and transmit them
to their corresponding neighbors. At the same time, the system is capable of accurately decoding and
processing the dense information received from neighboring rank, which send and receive data with
dynamic size.

1 Background and Significance

The problem we are solving is the gravitational interaction N-body simulation in 3D space. This is a
complex problem that involves simulating the motion of a system of N particles under the influence of
gravitational force. The gravitational interaction N-body problem is a classic problem in astrophysics,
and it has many important applications in astronomy, cosmology, and aerodynamics.
The gravitational interaction N-body problem is important in astrophysics because it is essential to under-
standing the dynamics of celestial objects such as stars, planets, and galaxies. In astronomy, the simulation
of N-body system can help explain the formation and evolution of galaxies and their components, such as
globular clusters and galactic nuclei. Cosmological simulations, which use N-body techniques, are crucial
to understanding the large-scale structure of the universe, including the distribution of dark matter.
In aerodynamics, N-body simulations can be used to model the flow of particles around an object, such
as aircrafts or rockets, and to optimize their design for better performance. Additionally, the simulation
of N-body systems is also relevant in fields such as materials science, biology, and chemistry, where it can
help understand the behavior of molecules and atoms under different conditions.
Although the gravitational interaction N-body simulation is a fundamental topic in many fields, it poses
significant challenges due to the lack of analytical solutions. This problem requires massive computa-
tional resources, particularly for large-scale systems, making it computationally intensive. Therefore, it
is essential to have efficient and accurate methods to advance research in this field. Fortunately, recent
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progress in machine learning and high-performance computing has made it possible to accelerate N-body
simulations and reduce their computational cost while maintaining high precision. Specifically, techniques
such as parallel computing and GPU acceleration can significantly speed up simulations.
In summary, the gravitational interaction N-body problem is a complex and important problem in as-
trophysics, astronomy, cosmology, aerodynamics, and other fields. Solving this problem efficiently and
accurately can lead to significant advances in our understanding of the universe and its components, as
well as in the design of new technologies.

2 Scientific Goals and Objectives

The scientific goal of this project is to develop an efficient and accurate N-body simulation system using
high-performance computing. The objects of this project are:

• Develop an N-body simulation algorithm that can be parallelized efficiently to take advantage of
the high-performance computing architecture’s parallel processing capabilities.

• Optimize the parallelization of the numerical simulation algorithm to reduce communication over-
head and load balancing issues.

• Implement the simulation algorithm on a high-performance computing architecture (cluster) to
accelerate the simulation process and handle large-scale systems.

• Investigate the scalability of the developed algorithm by testing it on different sizes of N-body
systems and assessing its performance with increasing numbers of processors.

• Evaluate the performance of the parallelized algorithm by analyzing its data movement and compute
intensity, and comparing it with the theoretical limits of the roofline model.

• Identify and optimize the performance bottlenecks of the parallelized algorithm using techniques
such as loop tiling, vectorization, and cache optimization to improve its computational efficiency.

• Compare the performance and efficiency of the parallelized algorithm with the non-parallelized
version to evaluate the benefits of parallelization.

The ultimate goal of this project with a focus on parallelism is to develop a highly scalable and efficient
N-body simulation system that can take advantage of the available parallel processing resources. This
project aims to address the challenge of simulating the dynamics of a large number of interacting bodies,
such as galaxies or star clusters, which require significant computational resources to accurately model
their behavior.
By developing an N-body simulation algorithm that is highly parallelizable and optimized for high-
performance computing architectures, this project aims to significantly reduce the time and resources
required to simulate such systems. The parallelization of the algorithm will involve minimizing communi-
cation overhead and load balancing issues, which are common challenges when parallelizing computational
tasks. By implementing the simulation algorithm on a high-performance computing architecture, such as
a cluster, this project aims to accelerate the simulation process and handle large-scale systems that would
be infeasible to simulate on a single processor.
HPC (High-Performance Computing) architecture is a specialized computing infrastructure that delivers
high computational power, fast storage, and networking capabilities to manage large-scale scientific, en-
gineering, and data-intensive applications. It is comprised of a cluster of interconnected computers or
servers, each equipped with multiple processors, high-speed interconnects, and substantial amounts of
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memory and storage.
In our project, the need for compute hours on an HPC architecture is warranted by the computational
requirements of the N-body simulation problem. The gravitational interaction between N particles de-
mands a large number of calculations, which increases exponentially with the number of particles. This
computational complexity poses a significant challenge when simulating systems with a large number of
particles using traditional numerical methods, which can be slow and require a vast amount of memory.
In contrast, an HPC cluster can provide significant computing resources to expedite the simulation process
and handle large-scale systems. The use of HPC can also allow for the exploration of a broader range of
parameters, enabling a more comprehensive study of the N-body problem.

3 Algorithms and Code Parallelization

3.1 Cell List Algorithm

We develop our N-body simulation system based on the Cell List Algorithm, which is a computational
technique aimed at reducing the computational complexity of pairwise interactions in N-body simulations.
It partitions the simulation box into a grid of cubic cells, each with a fixed side length corresponding to the
cutoff radius for pairwise interactions. Particles in the system are then assigned to individual cells based on
their positions. It is worth noting that alternative algorithms such as the Barnes-Hut tree algorithm or Fast
Multiple Method can also be used for N-body simulation. However, we chose the Cell List Algorithm due
to its effectiveness in reducing the computational cost of pairwise force calculations. During the calculation
of pairwise forces, the algorithm considers only particles within the cutoff radius and neighboring cells.
This approach significantly reduces the computational cost of calculating pairwise forces compared to a
brute-force approach. For the Cell List, we use periodic physical domain boundaries, meaning that a
particle exiting the domain from one boundary immediately enters it again from the opposite boundary,
as if the domain was wrapped around. The number of cells required for the simulation grid depends on
the chosen cutoff radius for the simulation. In the following passage, we provide detailed implementation
details of the Cell List Algorithm, including the determination of the number of cells required for the
simulation grid.

3.2 Leapfrog Time Integration Algorithm

To propagate the positions and velocities of particles forward in time while accounting for the forces
acting on them, we employ the leapfrog time integration algorithm. This algorithm, also referred to
as the ’kick-drift-kick’ method, ensures second-order accuracy by updating particle velocities halfway
between position updates. At each time step, we update the positions and velocities of particles using
the following operations:

1. ”Kick” operation on vit+1/2: We update the all particle velocities halfway between position updates,
using the forces acting on them.

2. ”Drift” operation on pit+1: All particle positions are updated using the updated velocities from the
previous kick operation.

3. ”Kick” operation on vit+1: All particle velocities are updated again, using the updated positions
from the previous drift operation.

The sequence of operations is repeated for each time step in the simulation process.
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3.3 Libraries and Parameters

The libraries we used have been: cassert, this one checks assumptions and conditions during program
execution, and helps with debugging by aborting the program if the condition is false; cmath, this con-
tains mathematical functions and performs mathematical operations on floating-point numbers; iostream
provides standard input/output stream objects for reading from and writing to the console; string imple-
ments a string class; vector implements a vector template class; random offers random number generation
facilities; algorithm contains a variety of algorithms for operations. Finally, notice that, for our simula-
tion, we use non-dimensional parameters, i.e., unitless. This means that we’re not using realistic numbers;
we set the gravitational force G to be 1.

3.4 Baseline Code Implementation

Our program is composed of four header files: Allocator.h, Cell.h, Nbody.h, and force_interaction.h,
and two cpp files: force_interaction.cpp and main.cpp.

The Allocator.h header defines an aligned_allocator struct that is utilized to allocate and deallo-
cate aligned memory. Specifically, posix_memalign is used to allocate memory with a 32-byte alignment.
This alignment is necessary for optimal performance when working with SIMD instructions, which is ben-
eficial for ISPC and vectorizing force interaction computation. The customized allocator is intended to
be used in conjunction with the vector data structure to ensure that data is properly aligned for efficient
SIMD operations.

We implement the template class named Cell inside the cell.h header using the data-oriented pro-
gramming paradigm to optimize performance. The class has private member variables for position,
velocity, and acceleration, with each of these consisting of three vectors for the x, y, and z coordinates.
Furthermore, the class is templated on capacity N, which specifies the maximum number of particles that
can be stored in each cell, and this allows us to control the vector capacity. By doing so, we avoid memory
re-allocation, which can introduce performance overhead due to the need to copy data from one memory
block to another, and can also lead to memory leaks and pointer invalidation in our case.

Nbody.h is where we define all the necessary functions needed for updating the state of the simula-
tion, including resetting temporary cells, updating ghosts (i.e. particles that will move the neighboring
cells), updating boundaries, and updating particle positions, velocities, and accelerations. To develop a
NUMA-aware program, we first allocate the array of cells on the heap inside the constructor, and then
we use a for-loop to initialize the array. This ensures that we adhere to the NUMA first touch policy.
We manage the cell objects by subsets using the cell_subset variable, which consists of 125 vectors of
pointers to the cell objects. This approach facilitates the tracking of subsets of boundary cells and ghost
cells.

Below is the detailed illustration of Nbody.h. (We are the main developer of the code.)
class Cell: We define our own class called Cell, which is templated on N and has 9 fields, p x, p y,

p z, v x, v y, v z, a x, a y, and a z, respectively the structure of array of the positions, velocity, and
accelerations. When we call the constructor of this class Cell, we reserve a size of N for each of the fields
to ensure the size of vectors doesn’t change throughout the program. We include this class as a header
in the main header file.

find_n_cells(): In this function, we aim to find the number of cells in the grid. We do so by dividing
the side length by two until the cutoff radius is just above (greater than) the side length of a cell. The
reason is that this would ensure only interactions and forces between the immediate neighbors will have
effects. For example, in a 3-d case, one cell has 27 immediate neighbors, and we only consider interactions
within this range in the algorithm. This is more efficient than algorithms that consider all pairwise forces.
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initialize(): This function initializes all particles in the cell and stores pointers to subsets. In the
first part, we generate the positions from a probability distribution, which is uniform distribution(0, 1)
in our case. Moreover, the initial velocity and positions of all particles are 0. We want to simulate a ”Big
Bang” in the visualization. In the second part of initialize(), we further divide the cell list into subsets to
facilitate the update procedure. The cell list comprises three distinct parts: the interior, boundary, and
ghost cells. We note that particles in the boundary cells are prone to crossing over to neighboring cells
belonging to different processes. To address this issue, ghost cells are introduced to temporarily store
data for the boundary cells and aid with the update process. To account for the ghost cells, the original
cell list with a side length of n cell is increased to n cell+2. The interior subset consists of cells whose
force interactions do not require communication between processes. We assign indices of 2 and -2 to the
ghost cells, 1 and -1 to the boundary cells, and (0, 0) to the interior. In three-dimensional space, there are
five subsets on each side, i.e., -2, -1, 0, 1, and 2. Consequently, there are a total of 125 subsets (5*5*5) in
the 3-dimensional cell list after this division. We use a variable called cell subset to store the 125 subsets,
each containing pointers to the cells. This approach simplifies the tracking of boundary cells and ghost
cells, making it easier to prepare for the upcoming exchange.

dump(): At specific timestep intervals, we output the coordinates of all particles of all processes into
a file for visualization.

The following are important functions for the position and acceleration updates:
update_boundaries(): This function updates the boundary cells’ information, including positions

and velocities, using the information from the corresponding ghost cells on the opposite side. The first
thing we do is to determine whether a cell is a ghost cell. The way we achieve this is through cell subset
indexing. If the subset index of any dimension of a cell is -2, that means it is a beginning ghost cell,
and we want to append the information to the corresponding boundary cell on the other side (which is
indexed at 1). For a ghost cell indexed at 2, we append the information to the boundary cell at -1. This
function is called at the end of update p().

update_ghosts(): This function is the reverse of the update boundaries() function above. All posi-
tions of particles in a boundary cell are given to the ghost cells. Determining a ghost cell and finding the
boundary cell we want to send from are the same as before. The function iterates through all ghost cells,
updating their properties to match their corresponding boundary cells and applying the necessary offset
to their positions. However, in this case, we want to completely overwrite the ghost cell using information
from the boundary cell instead of appending new information.

update_p(): This function computes the new positions of all particles. To prevent particles from
being updated twice in case they move to another cell during the update, we use a function called
reset temp cells(). This function creates a copy of the entire grid. Using a nested for-loop, we compute
the new positions for all particles in each cell. Next, we verify whether a particle still belongs to its
original cell and update its position in the corresponding temporary cell. Once all updates are complete,
we swap the temporary cells with the actual cells. After updating the positions of all particles., we call
update boundaries() to update particles from the ghost cells to their corresponding boundary cells.

update_v(): This function calculates the velocities of particles. It iterates through all cells, and for
each particle in each cell, computes the force between each pair of particles in the cell, updating their
velocities accordingly.

update_a(): This function is responsible for updating the acceleration of particles within the simu-
lation. It calls four other functions to do this: update a intra(), update a inner(), update ghosts(), and
update a boundary(). In terms of updating acceleration, our algorithm utilizes ISPC for vectorizing force
interactions. Thanks to the previous data alignment, this process has become very efficient. The accelera-
tion calculation is divided into three types: intra-cell, inter-cell, and boundary-cell interactions. First, we
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calculate the interactions between all particles within each cell. Then, for all interior cells, we compute the
interactions between each cell and its 27 neighboring cells since all their neighbors are in good standing.
Next, we update the ghost cells, which involves moving particles’ information in the boundary cells to
their corresponding ghost cells. After this is finished, each boundary cell is surrounded by cells in good
standing, allowing us to compute the force interactions between the boundary cells and their neighbors.
Hence, we update the acceleration for inter-cell interactions, but specifically for boundary cells.

update_a_intra(): This function calculates the acceleration of particles due to gravitational forces
within the same cell. It iterates through all cells and computes the gravitational force between each pair of
particles in the cell, updating their accelerations accordingly. This does not involve interactions between
cells or processes.

update_a_inner(): This function calculates the acceleration of particles due to gravitational forces
between different cells, but only for the interior cells of the grid. It iterates through all cells, and for each
cell, it iterates through neighboring cells to compute the gravitational force between particles in different
cells. The accelerations of particles are updated accordingly.

update_a_boundary(): This function is similar to update a inner(), but it calculates the acceleration
of particles due to gravitational forces between different cells for cells on the boundary of the grid. It
iterates through all cells and checks if the cell is on the boundary. If it is, it iterates through neighboring
cells and computes the gravitational force between particles in different cells, updating their accelerations
accordingly.

3.5 Parallelization of the code

Our code employs hybrid MPI/OpenMP parallelism, as some parts require communications between
processes while some do not. We will discuss our parallelization method as follows.

OpenMP parallelism: For the portion of code that does not have data dependencies, we employ
the OpenMP parallelism using #pragma omp parallel for schedule (dynamic,1). We have chosen
dynamic scheduling for load-balancing purposes. As the number of particles in a cell can vary much, we
do not want to waste resources on a cell with very few particles. Meanwhile, we choose a chunk size of
one, because the outer loop is large enough.

MPI topology: A three-dimensional topology is created using the MPI_Cart_create function. A
Cartesian MPI communicator cart_comm_ with periodic boundaries is used. Then, we use MPI_Cart_coords
to find the coordinates. We then find the 26 neighbors for each process. Finally, we call MPI_Cart_rank
to convert the coordinates to ranks and store all ranks of neighbors.

Message packing and unpacking: pack_boundary_subsets() packs the positions of particles in
the boundary subsets into message buffers, so that we can send the information to neighboring pro-
cesses and store it in their ghost cells. We pack the 125 subsets into 27 buffers, one buffer for each
neighbor. This function is used by update_p(). On the other hand, pack_ghost_subsets() packs the
positions and velocities of particles in the ghost subsets into message buffers so that we can send the
information to neighboring processes and unpack it in their boundary cells. This function is called by
update_a().unpack_to_boundary_subsets() and unpack_to_ghost_subsets() do the corresponding
unpacking for the two functions above.

Position update using non-blocking communication: To let a process continue with its compu-
tation without waiting for the communication to complete, we choose to use non-blocking MPI commu-
nications such as MPI_Isend. In the position update part, after updating all particles, we reset a buffer
and then pack the ghost subsets. Since a process may receive from others, we want to know the size of
the incoming message so that we can resize the receive buffer. This is achieved with one MPI_Probe on
the neighboring process. Moreover, we need two pairs of MPI_Isend and MPI_Irecv, one for sending the
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size and the other for sending the actual message. We send the size because we have packed information
of subsets into the message buffers, while each subset and cell contains different numbers of particles.
We need to keep track of this information to make correct updates. Finally, we use MPI_Waitall with
52 requests (because sending two messages to each of the 26 neighbors) to wait for all communication
operations to complete and the program can synchronize, after which we unpack to boundary subsets.

Asynchronous communication for acceleration update: We implement the acceleration update
similar to the position update. Here, we also allow compute/communication overlap through non-blocking
MPI communication. Since there are acceleration updates for forces interaction within the same cell or
between different cells in the interior cells, we call update_a_intra() and update_a_inner() while we’re
doing the non-blocking communication. In this way, we make more efficient use of available resources and
can help reduce overall program execution time.

File I/O with MPI: As explained in the previous section, we dump the coordinates information every
certain timestep (to lower the frequency and avoid too much pressure on the File I/O); here, we choose the
interval to be ten timesteps. We use MPI_File_write_at_all to let all processes simultaneously write
the particles’ data to the same file. To ensure they all write to the correct place in the file, MPI_Exscan is
employed to find the corresponding byte offset for every process. We output the coordinates into a .bin

file, and then read and visualize using a Python script.
ISPC: To write efficient parallel code for the update_a_intra() function, we utilized SIMD instruc-

tions with ISPC. We accomplished this by creating separate .cpp and header files for the function, and
then writing the ISPC version of the function.

3.6 Validation, Verification: Relevant Literature

To reduce computational costs in our project, we use Cell List, a data structure commonly used in molec-
ular dynamics simulations to identify particle pairs in short-ranged interactions. There is an established
method called Barnes-Hut algorithm (Barnes and Hut (1986)) for the N-body simulation problem, how-
ever Dehnen (2002) points to how this might not scale as well for large N . Given this method has already
been widely explored, we decided to implement the cell list algorithm under Professor Wermerlinger’s
suggestion.
Efficiently managing spatial information and reducing the complexity of pairwise particle interactions,
cell list is particularly valuable in systems with large numbers of particles, where brute-force approaches
to computing interactions between every particle pair can become computationally infeasible Allen and
Tildesley (1989). Using a cell list is reasonable because, based on the physical principle inverse-square
Law, the intensity of a physical quantity (such as gravitational force) decreases with the square of the
distance from its source. Hence, in our project, as two particles move further away from each other, their
force interaction becomes negligible. On the other hand, ghost cells facilitate efficient communication and
data exchange. Therefore, ghost cells, in conjunction with cell lists, provide an effective means to manage
spatial information and optimize the performance of parallelized N-body simulations.
Also, we use the Leapfrog Time Integration Algorithm, also known as the Verlet or Verlet-Störmer meth-
ods. It is a widely used numerical scheme for integrating Newton’s equations of motion. Supportive
related works include the book ”Computer Simulation of Liquids” Allen and Tildesley (1989) and the
article by Tuckerman et al. (1992) Tuckerman et al. (1992).

4 Performance Benchmarks and Scaling Analysis

In this section, the average wall time and Flops are obtained by averaging the results over total number
of time steps after the system reached equilibrium post-Big Bang.
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4.1 Roofline Analysis

Recall from lecture 10, the nominal peak arithmetic performance:

π = f × nc × ls × ϕ

where f is the base clock rate, nc refers to the number of cores, ws is the SIMD vector width, p is the
precision (here we use double precision), ls =

ws
p represents the SIMD lanes, and ϕ denotes the total flop

per cycle.

With Intel Xeon E5-2683v4 (Broadwell architecture), we can calculate the architecture peak performance
as follows:

π = 2.5 GHz× 32× 256

64
× 4

Flops

cycle

= 1280 Gflop/s

We conduct a roofline analysis for our system’s most computationally expensive function, update_a_intra.
To do this, we use a counter variable to calculate the number of force interactions in each time step after
the system has stabilized post-Big Bang. We then divide this number by the total number of time steps to
obtain the average number of force interactions. By analyzing the performance of update_a_intra using
this method, we hope to better understand the performance characteristics and potential limitations of
our system.
The average number of force interactions calculated is 431.1361149 ms. Inside the for-loop of update_a_intra(),
there are 27 flops due to additions, subtractions, division, multiplications, and sqrt().
Therefore, the total FLOPs for one time step in average can be compute as: Flops that one force inter-
action needed × Average number of force interaction per iteration, which is:

27 Flops

109 Flops
GFlops

× 431.1361149 ms

106 ms
s

= 11.6406751 Gflop/s (1)

Now, we plot the performance as below. we see that the measured performance are way below the
performance ceiling.

Figure 1: Roofline Model

The measured performance of the update_a_intra function is way below the peak performance,
perhaps due to memory bound. A large number of total load and store operations are encountered when
simulating 100000 particles. For example, at one time step, the result shows 10493488 load/store. Too
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many memory accesses will slow down the whole process. Meanwhile, this particle count was chosen
deliberately to saturate the computing power. However, the resulting memory-bound behavior leads to
reduced efficiency as the processor is waiting for data to be fetched from memory.

4.2 Scaling Analysis - Weak Scaling

For weak scaling, the goal is to add more processors p and increase the problem size to get to the larger
problem size at the same time of the problem size that is p times smaller, meaning Wp = pWs. This can
be indicated by:

Sp =
Wp/Tp

Ws/Ts
= p

Ts

Tp
= p

Ts

Ts + To

In this case, we run the program with 1, 23 = 8, 33 = 27 processes, and obtain the following results:

Test case A Test case B Test case C

Number of processes 1 8 27
Average wall clock time per time step [ms] 1217.07 746.75 6125.5

Number of particles 200 566 1040
Number of threads per time step 4 4 4

Table 1: Workflow parameters of the three test cases used during project development.

Notice that we determined the number of particles using the formula
√
200× 200× number of processes,

under the assumption that the number of operations to be performed is proportional to N2. However, we
use a cell list which may affect the actual number of operations performed.
Based on the table, Ts = 802.7 ms, we can then compute the speedup Sp as following:

S8 = 8× 1217.07

746.75
≈ 13.04

S27 = 27× 1217.07

6125.5
≈ 5.37

Then the efficiency can be obtain as below:

E8 = 8.60÷ 8 ≈ 1.63

E27 = 2.59÷ 27 ≈ 0.20

Notice that the efficiency decreases as the number of processes increases. This is expected, since as we
increase the number of processes, the amount of communication required between them also increases.
In this case, each process needs to communicate with 26 neighboring processes, and as we add more pro-
cesses, the amount of communication increases, leading to higher communication overheads and reduced
efficiency. Furthermore, it is worth noting that the scaling analysis we conducted does not take into
account any file I/O operations. We use file I/O mainly for visualization purposes, and our primary focus
in this analysis is on the computational aspects of the program.

5 Resource Justification

The request of the annual amount of node hours is linked with the node hours used by the representative
benchmarks. The number of node hours consumed by a simulation is computed by multiplying the number
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of nodes by the wall time expressed in hours for a typical production run.
The optimal job size of the representative benchmark is using 8 processes, each with 4 threads. This is
because, if we further increase the number of processes, the program becomes less efficient. Assuming the
corresponding wall time for a production run is 746.75 ms, which is then equivalent to ∼ 0.00663777777
node hours, as a result of the following product:

0.00663777777 node hours = 32 nodes× 0.74675s

3600 s
hour

The benchmark is short and represents a small number of iterations and particles (cycles, time steps or
an equivalent measure) in the update_a_intra() function.

6 Future Work

In future work, we plan to continue developing the N-body simulation system using high-performance
computing techniques. One area we plan to focus on is SIMD vectorization to further optimize the
performance of the code.Also, we encountered a high memory cost issue when using a templated class
to avoid memory reallocation during the simulation process. This limits our ability to execute multiple
processes with multiple threads. Therefore, we may need to explore other approaches to overcome this
issue. Finally, as we move forward, we need to prioritize the gains we want to achieve while considering
the tradeoffs that come with optimization.
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