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Abstract

The first three principal components (PCs) that result from a principal component
analysis (PCA) of a term structure have been across past literature interpreted as
shift (or level), slope (or steepness) and curvature of the yield curve (abbreviated
as SSC). Furthermore, recent literature has argued that PCA applied in a negative
interest rate environment is less e↵ective compared to its application to a positive
interest rate environment. This is relevant because this might a↵ect the e�cacy of
PCA as a risk-management instrument in a potential bonds portfolio.

This bachelor thesis first dives into the technicalities of PCA and PCA applied
to the term structure, to then empirically show the SSC pattern and to lastly re-
examine whether the negativity of interest rates impacts unfavourably the e�cacy
(i.e. lowers the amount of variability explained) of the first three factors compared
to a positive interest rate environment. No di↵erence in e�cacy, contrarily to recent
literature, is found. Implicitly, this suggest that the amount of variability explained
by the first 3 PCs might be a↵ected by other idiosyncratic characteristics of a given
sample.
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Chapter 1

Introduction

This thesis focuses on the usage of a method of dimensionality reduction, principal
component analysis (PCA), applied to the european yield curve. The dataset used
here is the average of AAA-rated bonds in the Euro Area.

The dataset comprises time series starting from 6th of September 2004 to the
23rd of September 2020. For argumentation and demonstration purposes of this
paper, this dataset will be divided in 5 parts: Part 1 comprises the entirety of the
dataset, Part 2 comprises the time series between 2004 and 2007 within a positive
interest rate environment, Part 3 comprises the time series between 2014 and 2017
within a negative interest rate environment, Part 4 comprises the time series be-
tween 2017 and 2020 within an even deeper negative interest rate environment, Part
5 is an extension of Part 3 with a time series between 2014 and 2020.

Previous literature (Steeley, 1990; Litterman & Scheinkman, 1991; Lord & Pelsser,
2006; Salinelli & Sgarra, 2007), has shown that the first three principal components
(PCs) represent the shift, slope and curvature (SSC) of the yield curve and how
these three components alone can explain the majority of variability of the entire
yield curve. This paper will illustrate this through the Part 1 Dataset, as the first
PC highly correlates with the shift, the second with the slope and the third with
the curvature.

Furthermore, recent literature (Lazarevic, 2019) has shown that in a negative
interest rate environment the amount of variability explained by the first three
principal components is lower than the amount explained by the first three PCs in a
positive interest rate environment. An implicit conclusion from Lazarevic (2019) is
that the application of PCA to the term structure requires awareness of the business
cycle of the underlying market. This paper will replicate the results from Lazarevic
(2019) with the Part 2 and 3 Datasets.

This thesis paper expands this analysis with the Part 4 and 5 Datasets. Thereby,
the expectation is that the variability explained by the first 3 PCs from the Part 4
and 5 Datasets will be lower than the one resulting from the Part 2 Dataset. This
expectation is given by the fact that both Part 4 and 5 Datasets lie in deeply nega-
tive interest rate environments.
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PCA applied to the Term Structure

This paper organises as follows. In chapter 2, I will delve into the previous
literature that dealt with the SSC pattern and the positive vs negative interest rate
application of PCA. In chapter 3, I will briefly go into the technicalities of PCA with
some examples of how this is used in practice in the field of finance when applied
to the yield curve. In chapter 4, I will delve into: the data selected, how this has
been pre-prepared, to finally arrive at the characteristics of its history. In chapter
5, I will illustrate my empirical results. In chapter 6, I will conclude.

2 Chapter 1 Ana Vitoria Rodrigues Lima



Chapter 2

Literature Review

2.1 Shift, Slope and Curvature

The studies that pioneered analysing the shift, slope and curvature (SSC) pattern
are the studies from Steeley (1990) and of Litterman & Scheinkman (1991). The
former applied factor analysis on the UK bonds curve, known as “Gilts”. The latter
applied factor analysis on the US bonds curve, known as “Treasuries”.

Steeley (1990) argues that using the price of coupon-bearing bonds would lead
to a misleading price, because the coupon payment feature makes the interest rates
(pure discount prices) ‘not directly observable’. As a consequence, he considers
‘pure’ discount prices, i.e. the ‘zeros’, which creates the spot curve1. First, he
estimates B-spline coe�cients, on which at first glance, he applies factor analysis.
Given the striking and satisfactory results coming from this, he later applies factor
analysis on the spot Gilts curve to “[...]obtain the sensitivities of the term structure
to the changes (i.e. eigenvectors) without further transformations.” (Steeley, 1990,
page 344). He considers the eigenvectors, coming from the latter analysis, to be the
sensitivities of the spot rates to the factors. He then impacts the average spot rate
curve by �2 and +2 times the eigenvectors for each of the three factors. A recurring
characteristic of the SSC pattern is the number of sign changes. In the first PC
there are 0 sign changes, in the second there is 1 sign change and in the third PC
there are 2 sign changes. This results in the graphs of:

Figure 2.1: Impacts of Components 1, 2 and 3 of the Mean Term Structure2

With further analysis in his paper, Steeley considers the first three components
to have the possibility to be interpreted as a change in level (shift), a change in

1See Chapter 4.1, where Spot, Par and Forward curves are explained.
2Source of these images: Steeley (1991), pages 346, 347 and 348.
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PCA applied to the Term Structure

slope and a change in curvature. At the end, as for the level, he assumes this to be
possibly represented by a long rate (a maturity from the long end of the curve); he
assumes the slope to be possibly represented by the spread rate (a long maturity
minus a short maturity), and he assumes the curvature to be possibly represented
by the volatility of the spread rate.

In Litterman & Scheinkman (1991) factor analysis is applied to the implied zero
curve (spot curve) of the US bonds, the ‘Treasuries’. This analysis is performed in
the framework of hedging a bond portfolio. They refer to the first three factors to be
‘level, steepness and curvature’. They consider factor analysis on the term structure
as a useful tool to assess what a bond portfolio is exposed to, i.e. which kind of risks
it is exposed to. In their analysis, the first three factors explain at least 96% of the
variability of the excess returns of any zero (i.e. zero coupon bonds, spot curve).
Given this, the e↵ects to a bond portfolio could be reduced to three factors: level,
steepness and curvature (to which also they, similarly to Steeley, refer to as changes
in the rate volatility). This means that duration hedging alone cannot optimally
hedge a portfolio, as the given portfolio would be immune to changes of the first
factor only, while still being nonexempt to changes in the second and third factors.

Later, in Lekkos (2000) a critique to both of these studies is presented. This
critique is about the choice, that Steeley and Litterman & Scheinkmann did in their
respective papers, of using the spot curve - this choice is deemeed by Lekkos to be
inappropriate as the spot rates are the averages of the corresponding forward rates
due to the no-arbitrage condition3. Lekkos not only criticizes the usage of the spot
curve instead of the forward curve, but also discredits the results of PCA applied to
forward rates, which he considers not su�cient to draw a link between macroeco-
nomic characteristics and the change of the shape of the yield curve that could be
drawn from factor analysis (Lekkos, 2000, page 1).

The critique presented in Lekkos (2000) has been discussed in Lord & Pelsser
(2006) to be incorrect, as the lack of the SSC pattern in Lekkos’ results might be
due to his non-smooth forward curve. Further, in light of the concepts of total posi-
tivity, oscillation matrices4, of Green’s matrix, and sign regularity, Lord and Pelsser
formulate su�cient, although not necessary, properties for a correlation matrix to
display the level and the slope5. However, with these properties the presence of cur-
vature still remains unexplained. Nonetheless, the pattern of sign changes (0 for the
first factor, 1 for the second factor and 2 for the third factor), although is not a full
description of what is perceived as SSC, it is a recurrent pattern. Hence, given that
“[...] in all the empirical studies [they] have seen, [this sign pattern] correctly signals
the presence of level, slope and curvature, [...] [they] expect it to be su�cient”(Lord

3In Chapter 4 Section 1 the Forward vs Spot curve debate is covered in more detail.
4Oscillation matrices are a sub-class of total positive matrices. A property of oscillation matrices

is that the nth eigenvector of such a matrix has exactly n� 1 sign changes (Lord & Pelsser, 2006).
5Lord & Pelsser (2006) - Page 21: “A quasi-correlation matrix R with strictly positive entries,

that satisfies:
i) ⇢i,j+1  ⇢ij for j � i, i.e. correlations decrease when we move away from the diagonal;
ii) ⇢i,j�1  ⇢ij for j  i, same as i)
iii) ⇢i,i+j  ⇢i+1,i+j+1, i.e. the correlations increase when we move from northwest to southeast.
displays level and slope. ”

4 Chapter 2 Ana Vitoria Rodrigues Lima



PCA applied to the Term Structure

& Pelsser, 2006, page 10). In their paper, Lord and Pelsser conclude that the part
of PCA applied to the term structure that is an ‘artefact’ are the orthogonality of
the factors and the extent to which the input is smooth enough as a curve. On the
other hand, the part of PCA applied to the term structure that is a ‘fact’ are the
positive correlations present in the term structures.

2.2 Positive Interest Rates Environment vs Neg-

ative Interest Rates Environment

Milan Lazarevic’s paper from 2019 “Principal component analysis in the negative
interest rate environment” has been the first paper in the space of PCA related
to the yield curve to have assessed the di↵erence in e�cacy (amount of variability
explained) between a positive and a negative interest rate environment.

Lazarevic applies principal component analysis to the average of AAA-rated
bonds in the european area. His intention is to compare the results he gets from a
positive interest rate environment sample (he picks a time-frame between 2004 and
2007) with the results coming from a negative interest rates environment sample
(time-frame of 2014 to 2017). The aim for this is to check whether in the negative
interest rates environment the established patterns of SSC continues to take place.
Inspite of the inconsistencies6 that arise from the correlation matrix of the negative
interest rate dataset (replicated in this paper with the correlation matrix of Part
3 Dataset in Table 3.3), this correlation matrix still has the property of oscillation
matrices (i.e. that the n

th eigenvector has n � 1 sign changes) that provides the
determined characteristics of the eigenvector influence and hence the SSC pattern
(Lazarevic, 2019).

However, although the SSC pattern continues to take place in the negative inter-
est rate environment, Lazarevic’s results do not display the same amount of variabil-
ity explained by the first three PCs from the positive rates sample and the negative
rates sample. In the positive interest rates sample the first three PCs explain more
than 95% of the entire variability, actually about 97%. This is not the case in the
negative interest rates sample, where the first three PCs explain less than 95%. In
order to reach the same amount of variance explained as in the positive rates sam-
ple, the consideration of an additional PC, the fourth PC, is needed in the negative
interest rates sample.

Given the number of its sign changes (3 sign changes), the fourth factor is called
by Lazarevic as “oscillatority” - this would need to be included in his negative
interest rate environment assessment so that to reach the same amount of variability
explained by the first 3 PCs in the positive interest environment sample. This leads
to a request of additional attention in the case that PCA is used for risk management
of a bond portfolio in a negative interest rate environment, as possible hedges that
consider the first three factors would be less e↵ective compared to a normal interest
rates environment. Specifically, this implies that the application of PCA requires
awareness of the business cycle of the underlying market.

6These inconsistencies are explained in Chapter 3.1.

Chapter 2 Ana Vitoria Rodrigues Lima 5



Chapter 3

Methodology

3.1 PCA at a glance

Principal component analysis is a dimensionality reduction method whose purpose
is to reduce the dimension of a large set of variables. This is performed while retain-
ing as much of the variation as possible that is present in the original dataset, and
hence of its information potential. Principal components (PCs) are uncorrelated
and are calculated so that each of them maximises their variation under some given
constraints that will be presented later. PCs are built so that the first principal
component (PC) is the one whose data has the most variation, then the second PC
has the second highest variation, and so on - PCs are constructed through calcu-
lating the covariance matrix of the original data and performing eigenvalue spectral
decomposition on the covariance matrix, which makes the PCs orthogonal (statisti-
cally independent).

The first PC maximises its variance under the constraint that the sum of squared
values in the first eigenvector is 1. The second PC maximises its variance under the
constraint that the sum of squared values in the second eigenvector is 1 and that
the covariance between the first PC and the second PC is 0. For the covariance
between PCs to be 0, eigenvectors have to be orthogonal.1 Meaning they have to be
perpendicular (they intersect at an angle of 90�) or that their dot product (or more
generally, an inner product) is 0. Orthogonality is necessary here also because the
second PC should capture the highest variance from what is left after the first PC
explains the data as much as it can. The third PC will be calculated in the same
fashion as the second and so on.

PCA is performed by getting the dataset into the format of a matrix X. After
this is done, the covariance matrix of the matrix X is taken into consideration and
decomposed under what is known as spectral decomposition. However, the correla-
tion matrix can also be used. Using the correlation matrix instead of the covariance
matrix is equivalent to standardizing all the variables of the original dataset matrix
X to have a mean of 0 and variance of 1. This paper applies PCA to the correlation
matrices, these are presented in Tables from 3.1 to 3.5.

1See Appendix A.1 Derivation of the PCs and the mathematics behind this.
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PCA applied to the Term Structure

Furthermore, in the interest rates context, using the correlation matrix is inter-
esting also in order to look at its features. As it is described by (Salinelli & Sgarra,
2006, page 683), the features of the correlation matrix of the forward interest rates
are:

(a) interest rates at di↵erent maturities are always positively correlated;
(b) the correlation coe�cients decrease when the distance between the indices in-
creases: this is a far obvious consequence of the decreasing degree of correlation
when the variables are more distant in time;
(c) the previous reduction in the correlation between variables corresponding to the
same di↵erence in the indices tends to decrease as the maturities of both the variables
are greater.

In Tables 3.1, 3.3, 3.5 there are some inconsistencies with the Salinelli - Sgarra
aforementioned features. In Table 3.1 the inconsistencies are that ⇢1y15y,1y20y >

⇢1y10y, in Table 3.3 are that ⇢1y20y,1y30y > ⇢1y15y and in Table 3.5 are that ⇢1y20y >

⇢1y15y. These inconsistencies, which Lazarevic (2019) refers to as anomalies, are not
present in the correlation matrix, Table 3.2, of the Part 2 Dataset (which Lazarevic
selected as the positive interest rates dataset). As a consequence, these inconsis-
tencies are explained by him as coming from the markets distortions that negative
interest rates caused. However, although the Part 4 Dataset is more negative than
the Part 3 Dataset, these inconsistencies do not take place in its correlation matrix,
see Table 3.4. Whether or not there is some idiosyncrasy found within the Part 3
Dataset, will be discussed later in this paper.

Table 3.1: Correlation Matrix - Part 1 Dataset 2

Yields 1y 2y 3y 4y 5y 7y 10y 15y 20y 30y

1y 1 0.8706722 0.7382580 0.6541856 0.5864366 0.4944913 0.4292606 0.4581945 0.4929077 0.4263754

2y 0.8706722 1 0.9367560 0.8332568 0.7308554 0.5828366 0.4687370 0.4876800 0.5403280 0.4814921

3y 0.7382580 0.9367560 1 0.9571461 0.8832763 0.7341091 0.5671174 0.5397008 0.6039285 0.5612948

4y 0.6541856 0.8332568 0.9571461 1 0.9718646 0.8646631 0.6798993 0.6033408 0.6561303 0.6124999

5y 0.5864366 0.7308554 0.8832763 0.9718646 1 0.9430855 0.7754158 0.6621698 0.6823133 0.6171552

7y 0.4944913 0.5828366 0.7341091 0.8646631 0.9430855 1 0.9148106 0.7738225 0.7010445 0.5536456

10y 0.4292606 0.4687370 0.5671174 0.6798993 0.7754158 0.9148106 1 0.9119636 0.7298209 0.4442410

15y 0.4581945 0.4876800 0.5397008 0.6033408 0.6621698 0.7738225 0.9119636 1 0.8908696 0.5892942

20y 0.4929077 0.5403280 0.6039285 0.6561303 0.6823133 0.7010445 0.7298209 0.8908696 1 0.8743291

30y 0.4263754 0.4814921 0.5612948 0.6124999 0.6171552 0.5536456 0.4442410 0.5892942 0.8743291 1

Table 3.2: Correlation Matrix - Part 2 Dataset

Yields 1y 2y 3y 4y 5y 7y 10y 15y 20y 30y

1y 1 0.9367176 0.8429880 0.7317580 0.6241783 0.4916326 0.4432297 0.4151656 0.3997074 0.3854657

2y 0.9367176 1 0.9503044 0.8540818 0.7427311 0.5922157 0.5317987 0.5009702 0.4855831 0.4740138

3y 0.8429880 0.9503044 1 0.9562913 0.8844120 0.7458737 0.6402225 0.5468252 0.5095540 0.4943103

4y 0.7317580 0.8540818 0.9562913 1 0.9668195 0.8678876 0.7337163 0.5720302 0.5065002 0.4829740

5y 0.6241783 0.7427311 0.8844120 0.9668195 1 0.9405138 0.8072030 0.6041727 0.5152359 0.4831126

7y 0.4916326 0.5922157 0.7458737 0.8678876 0.9405138 1 0.9192545 0.7139286 0.6021257 0.5520158

10y 0.4432297 0.5317987 0.6402225 0.7337163 0.8072030 0.9192545 1 0.8924462 0.7999755 0.7475159

15y 0.4151656 0.5009702 0.5468252 0.5720302 0.6041727 0.7139286 0.8924462 1 0.9662231 0.9395292

20y 0.3997074 0.4855831 0.5095540 0.5065002 0.5152359 0.6021257 0.7999755 0.9662231 1 0.9799224

30y 0.3854657 0.4740138 0.4943103 0.4829740 0.4831126 0.5520158 0.7475159 0.9395292 0.9799224 1

2All the datasets have the first di↵erences taken in order to ensure stationarity, unless stated
otherwise. Hence, all the Tables from 3.1 to 3.5 also come from calculations coming from the
dataset with the first di↵erences taken. Additionally, these are the correlation matrices of the
forward rates, not the spot rates. Refer to Chapter 4.1 for the explanation of this choice.

Chapter 3 Ana Vitoria Rodrigues Lima 7



PCA applied to the Term Structure

Table 3.3: Correlation Matrix - Part 3 Dataset

Yields 1y 2y 3y 4y 5y 7y 10y 15y 20y 30y

1y 1 0.7467732 0.5675521 0.4915096 0.4317059 0.3754605 0.3108292 0.2802612 0.3113723 0.3103705

2y 0.7467732 1 0.9033645 0.7816682 0.6680555 0.5505669 0.4814009 0.4533441 0.4294919 0.2841078

3y 0.5675521 0.9033645 1 0.9445068 0.8657556 0.7541648 0.6616158 0.6077071 0.5690253 0.3738293

4y 0.4915096 0.7816682 0.9445068 1 0.9660479 0.8920900 0.7884906 0.7105566 0.6811410 0.4851627

5y 0.4317059 0.6680555 0.8657556 0.9660479 1 0.9616110 0.8703719 0.7860346 0.7636917 0.5658801

7y 0.3754605 0.5505669 0.7541648 0.8920900 0.9616110 1 0.9527289 0.8808913 0.8482403 0.6052317

10y 0.3108292 0.4814009 0.6616158 0.7884906 0.8703719 0.9527289 1 0.9682210 0.8995250 0.5473875

15y 0.2802612 0.4533441 0.6077071 0.7105566 0.7860346 0.8808913 0.9682210 1 0.9415493 0.5585883

20y 0.3113723 0.4294919 0.5690253 0.6811410 0.7636917 0.8482403 0.8995250 0.9415493 1 0.7825732

30y 0.3103705 0.2841078 0.3738293 0.4851627 0.5658801 0.6052317 0.5473875 0.5585883 0.7825732 1

Table 3.4: Correlation Matrix - Part 4 Dataset

Yields 1y 2y 3y 4y 5y 7y 10y 15y 20y 30y

1y 1 0.8637758 0.7258025 0.6361242 0.5907675 0.5345038 0.5049394 0.4518187 0.4185470 0.3843984

2y 0.8637758 1 0.9415044 0.8752534 0.8167446 0.7170102 0.6286403 0.5628753 0.5348181 0.4951334

3y 0.7258025 0.9415044 1 0.9658624 0.9253162 0.8287636 0.7150937 0.6313999 0.6030497 0.5600448

4y 0.6361242 0.8752534 0.9658624 1 0.9734609 0.9026154 0.7881030 0.6837533 0.6453678 0.6015276

5y 0.5907675 0.8167446 0.9253162 0.9734609 1 0.9560526 0.8586238 0.7393778 0.6948859 0.6485815

7y 0.5345038 0.7170102 0.8287636 0.9026154 0.9560526 1 0.9486314 0.8406725 0.7899512 0.7411981

10y 0.5049394 0.6286403 0.7150937 0.7881030 0.8586238 0.9486314 1 0.9437246 0.9007358 0.8426645

15y 0.4518187 0.5628753 0.6313999 0.6837533 0.7393778 0.8406725 0.9437246 1 0.9809048 0.9224890

20y 0.4185470 0.5348181 0.6030497 0.6453678 0.6948859 0.7899512 0.9007358 0.9809048 1 0.9570918

30y 0.3843984 0.4951334 0.5600448 0.6015276 0.6485815 0.7411981 0.8426645 0.9224890 0.9570918 1

Table 3.5: Correlation Matrix - Part 5 Dataset

Yields 1y 2y 3y 4y 5y 7y 10y 15y 20y 30y

1y 1 0.8086258 0.6480536 0.5613011 0.5026965 0.4380749 0.3817116 0.3443029 0.3520006 0.3237803

2y 0.8086258 1 0.9221333 0.8252094 0.7316859 0.6127357 0.5287393 0.4878069 0.4666028 0.3478044

3y 0.6480536 0.9221333 1 0.9539584 0.8891575 0.7772547 0.6710669 0.6076928 0.5764638 0.4261923

4y 0.5613011 0.8252094 0.9539584 1 0.9681661 0.8912420 0.7796717 0.6934408 0.6626295 0.5124021

5y 0.5026965 0.7316859 0.8891575 0.9681661 1 0.9579499 0.8617840 0.7660175 0.7363767 0.5837084

7y 0.4380749 0.6127357 0.7772547 0.8912420 0.9579499 1 0.9505043 0.8669259 0.8278581 0.6408883

10y 0.3817116 0.5287393 0.6710669 0.7796717 0.8617840 0.9505043 1 0.9605522 0.8991456 0.6268919

15y 0.3443029 0.4878069 0.6076928 0.6934408 0.7660175 0.8669259 0.9605522 1 0.9540110 0.6579448

20y 0.3520006 0.4666028 0.5764638 0.6626295 0.7363767 0.8278581 0.8991456 0.9540110 1 0.8288959

30y 0.3237803 0.3478044 0.4261923 0.5124021 0.5837084 0.6408883 0.6268919 0.6579448 0.8288959 1

3.2 PCA applied to the yield curve

On a typical yield curve principal component analysis, the first factor explains more
than 90% of the yield curve variation and the first three factors together even more
so. Meaning that the whole information of an interest rates market (here the euro
area, but this could also be applied to a specific country market, e.g. Spain or
Germany) can be expressed just with three numbers, i.e. the first three PCs. Given
that principal components, as previously mentioned, are orthogonal, they are uncor-
related and independent from each other; meaning that their respective information
packages are uncorrelated. Hence, each of them can explain something di↵erent from
each other. As a consequence, these factors can become quite useful in trade ideas
if they can also be intuitively explained. In the context of interest rates, the first
PC is explained as the shift, the second as the slope and the third as the curvature.

3The arbitrarity of the sign is to be noted. As stated in Joli↵e (2002) at page 67: “It should
be noted that the sign of any PC is completely arbitrary. If every coe�cient in a PC, zk = ↵0

kx,
has its sign reversed, the variance of zk is unchanged, and so is the orthogonality of ↵k with all
other eigenvectors.”. Given this, I set the sign so that the first PC always has positive signs. This
arbitrary choice has been done for an economic reason. In case there is a negative shock, if the
signs were negative it means that the yields would go up. Although this might be at first the initial
reaction of the markets, we know that the Central Bank would also intervene with the decision
to cut rates. Hence, the yield curve would rather shift downwards due to ECB rate cuts. As a
consequence, the first PC1 has to be of a positive sign for these explanation purposes. With a
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Table 3.6: PCA results from Part 1 Dataset 3

Variables PC1 PC2 PC3 PC4

1y 0.26967 0.422346 0.1681428 0.56076

2y 0.30679 0.455693 0.0814210 0.19191

3y 0.33502 0.338424 -0.0390552 -0.16647

4y 0.34984 0.183643 -0.1423547 -0.32499

5y 0.35111 0.040809 -0.2310796 -0.34277

7y 0.33817 -0.173813 -0.3599548 -0.16261

10y 0.30842 -0.357454 -0.3746351 0.25289

15y 0.30561 -0.408218 -0.0018212 0.41612

20y 0.31537 -0.326600 0.4145866 0.08241

30y 0.27005 -0.180976 0.6694075 -0.35715

Eigenvalues 7.15358 1.29855 0.78319 0.53229

Proportion of V ariance 71.54% 12.98% 7.832% 5.323%

Cumulative V ariance 71.54% 84.52% 92.353% 97.676%

To interpret the entries from Table 3.6: if the first eigenvector increases by 1
unit, all yields increase - meaning that the 1y yield would increase by 0.269, the 2y
yield by 0.307, the 3y yield by 0.335 and so on. If the second eigenvector increases,
then short yields increase and long yields decrease - the second PC explains the
directional impact on the slope, which is not explained by the first factor.4 If the
third PC increases, then the front end of the curve increases, the belly decreases and
the long end increases - this is interpreted as the curvature dynamics of the curve,
which is not explained by the first nor by the second PC.

PCA applied to the term structure is a very useful instrument within finance.
Given the aforementioned properties of PCA, we are able to explain a large dataset
with few factors that not only explain the majority of its variability and retain a
large part of the original information package of the original dataset, but that are
also uncorrelated with each other, so that each of them ‘explains something di↵er-
ent’. To apply PCA to financial data however, there is also the assumption that the
market is driven by a set of uncorrelated linear factors (Huggins & Schaller, 2013).
If this is the case, this can be used as a powerful instrument to brainstorm trade
ideas and as a risk-management instrument as well.

An example of PCA used to build trade ideas is to regress PCs to find the
driving forces of these PCs - so that to then build a view on those driving forces.
This would mean to use regressions to find external potential explaining variables
for the given factors. Previous literature has already worked towards the attempt at
giving an economical meaning to factors coming from principal component analysis
- an example of this is Ponomareva, Sheen, & Wang (2019), who calculated PCs
from bilateral $-FX pairs and researched potential economic meanings behind these
through regressions in an auto-regressive model.

A further usage of PCA in the trading field is also to quantify the impact of these

positive sign in the first PC, it is possible to explain a negative and a positive shock without leading
into contradictions. In case a negative shock hits the economy: the ECB intervenes, cuts rates,
and the yield curve shifts down. In the case a positive shock hits the economy: the ECB would feel
more comfortable adjusting the deposit interest rate at a higher rate to prevent a possible inflation
spike. This is also confirmed by Ruppert and Matteson with “The first, o1, has all positive values.”
(Ruppert & Matteson, 2015, page 522).

4Short yields are the maturities at the front of the curve - this is called the ‘front end’ of the
curve as it has the short term maturities, e.g. 1y, 2y, 3y yields. Long yields are the maturities in
the ‘long end’ of the curve, i.e. after for example the 20y and 30y yields. The belly of the yield
curve is the maturities in between, such as 7y, 10y and 15y yields.
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potential driving forces on the calculated factors and thereby hedge these specific
factors accordingly. This can help in calculating optimal hedge ratios to immunize
a portfolio against the changes in factors (Huggins & Schaller, 2013).

A further example of trading strategies that could deploy PCA are relative value
trades. Relative value trades are trades defined as o↵ering return opportunities that
are uncorrelated to the market direction - more commonly these are also referred
to as ‘finding mispricings in the markets’. Consequently, PCA can be seen as a
key in relative value analysis given its ability to produce and analyze time series
uncorrelated with market direction (Huggins & Schaller, 2013).

Lastly, another example for PCA application in finance is the evaluation of the
VaR, the Value at Risk. The aim of VaR calculations and assessments is to be able
to formulate statemets such as “We are X per cent certain that we will not lose more
than V dollars in the next N days.” (Hull, 2015, page 517).
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Chapter 4

Data

4.1 Data Selection and Elaboration

The dataset chosen comes from the public Eurostat Database. For this paper the
average of AAA-rated euro area central government bonds has been selected for the
maturities of 1y, 2y, 3y, 4y, 5y, 7y, 10y, 15y, 20y, and 30y1 as daily data. The curve
of reference is not the spot curve but the forward curve instead. The timeframe of
the aforementioned dataset spans from the 6th of September 2004 to the 23rd of
September 2020. The calculations shown in this paper have been done mainly in
R2 with just one step in Excel prior to that. Meaning that I downloaded the daily
data of the forward curve for the AAA-rated euro area bonds in Excel, but before
working on them in R, I calculated the first di↵erence to ensure stationarity.

Forward curve instead of a spot curve

In this section I will go through why the forward curve has been selected instead of
the spot curve for the analysis present in this paper. Before getting to this, I will
briefly describe some characteristics of an yield curve and its di↵erent curves.

Figure 4.1: Par, Spot and One-Year Forward Rate Curves3

1These maturities have been chosen to replicate as similarly as possible the results from Lazare-
vic (2019) with the Part 2 and 3 Dataset in Chapter 5. Note that the Eurostat Dataset provides
more maturities than this, i.e. all maturities ranging from 1 to 30 years.

2The R version used is 4.0.1 (2020-06-06). The additional packages ‘tseries’ and ‘stargazer’ as
software have been used.
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A yield curve is a curve plotted on a graph with the bond yields (usually plotted
on the y axis) against their maturities (plotted on the x axis). The yield curve can
be seen from di↵erent perspectives, among these it can be seem from the perspective
of three curves: the par curve, the spot curve and the forward curve. The par curve
is a curve constructed for theoretical bonds whose prices equal par (100) - note that
at par the coupon equals the yield. The spot curve is the curve of the “zeros”, i.e.
the zero coupon paying bonds. The forward curve plots the forward rates, which
are the interest rates for a loan between any two dates in the future as of today.
Because of the no-arbitrage market assumption, a forward rate must be so that the
interest rate of a n years loan is the same as if I had taken a loan today for n-i (or
m) years with, still today, taken a loan in n-i (or m) years from now for i (or n-m)
years.

(1 + sn)
n = (1 + sm)

m(1 + fm,n)
n�m

For example, if I were to take a loan today for 3 years with a 3y interest rate, I
would have to pay the same as if I were to take two separate loans today: a loan
today for 2 years with the 2y interest rate and to sign a contract today where I get
a loan in 2 years from now for 1 year in length - the interest rate of the latter loan
is the forward interest rate, 2 years forward for 1 year. To clarify this with a more
straightforward numerical example:

(1 + s3)
3 = (1 + s2)

2(1 + f2,3)
1

As Fabozzi (1983) summarizes: “[...] a par rate is used to discount a set of
cash flows (those of a par bond) to today, a spot rate is used to discount a single
future cash flow to today, and a forward rate is used to discount a single future cash
flow to another (nearer) future date. The par yield curve, the spot-rate curve, and
the forward-rate curve contain the same information about today’s term structure
of interest rates.”4. Another perspective to look at the relationship among these
curves, is that the 1y forward rates shows the ‘marginal’ yield of lengthening the
maturity of the investment of one year - whereby the spot rates measure an invest-
ment’s average reward from today to a determined maturity (Fabozzi, 1983, page
162). Given this, spot interest rates can be seen as geometric averages of one or
more forward rates (Fabozzi, 1983). Because of this reason, Lekkos (2000) considers
the results coming from the factor analysis applied to the term structure with the
usage of spot curves to be a “[...] statistical artifact created by the restrictions that
the no-arbitrate hypothesis imposes on the correlation matrix of spot interest rates”.

In his piece from 2000, Lekkos considered the studies on the Gilts curve (Steeley,
1990) and on the Treasuries curve (Litterman & Scheinkman, 1991) to have arrived
at a misinterpretation of the results. These studies used the ‘zeros’, i.e. the zero
coupon paying bond yields on the spot curve. As stated above, the spot rates can
be seen as a geometric average of the forward rates - hence Lekkos considered the
spot rates to be a ‘transformation’ of the existing forward dates. This leads to an
extra covariation to be artificially created, hence “[...] any incremental information
extracted from spot rates that is not present in the forward rates has no economic

3Source of this image: Fabozzi (1983, page 162).
4These curves can be derived through interpolation and bootstrapping techniques - this will not

be investigated in this paper. For this refer to Fabozzi (1983, page 179).
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underpinnings and should be ignored.” (Lekkos, 2000, page 8). A solution for that
might seem at first to use the forward curve instead. However Lekkos’s results of
factor analysis applied to the forward yield curve are not satisfactory in determining
the characteristics of shift, slope and curvature that the studies from Steeley and
Litterman-Scheinkman showed. In Lekkos (2000), the factor analysis on forward
rate reveals a very di↵erent factor structure, with only about 40 to 60% of explained
variance on the first factor - hence, he concludes that there is “[...] no inference
on the link between macroeconomic factors and changes of the shape of the term
structure [that] can be drawn from the results of factor analysis.” (Lekkos, 2000,
page 1).

This has been later questioned by Lord & Pelsser (2006), where they do agree
that the forward curve is a more appropriate curve to perform factor analysis on
the term structure, but they consider the findings of Lekkos (2000) to have been
misleading becasue of the technique Lekkos used to fit the forward curve. As Lekkos
used a bootstrapping method to linearly interpolate between the quotes, his forward
curve had ‘kinks’ instead of being a smooth enough yield curve. In their paper, Lord
and Pelsser used other fitting techniques, such as continuously compounded annual
forward rates - with which, contrarily to Lekkos (2000), they do find the level, slope
and curvature pattern.

In light of this previous literature, the curve chosen for the analysis taking place
in this paper is the forward curve.

Ensuring stationarity

A nonstationary model is a model where the volatility parameters are a function
of time (Hull, 2015, page 832). If a time series is stationary, its properties do not
depend on the time at which these series are observed. When doing statistical in-
ference involving time series models, stationarity is a requirement.

To check if a process is an unit root process, one could compute and solve the
lag polynomial. When the lag polynomial of a stochastic process has a root that
is 1, this is called a unit root (or random walk) process. A process is stationary
if the roots of a given lag polynomial are outside the unit circle. Alternatively,
stationarity can be tested. In order to check if the given dataset is stationary, I
tested the time series of the forward curve made of the average values of the AAA-
rated 1y, 2y, 3y, 4y, 5y, 7y, 10y, 15y, 20y, 30y maturities bonds. The test used for this
has been the augmented Dickey-Fuller test (ADF). The ADF test is an augmented
version of the Dickey-Fuller test, meaning that the ADF is for more than 1 lag.
The null hypothesis H0 of the ADF test is that a unit root is present in a time
series sample. The alternative hypothesis H1 is stationarity or trend-stationarity.
The aforementioned time series did not prove to be stationary with a significance
level (alpha ↵) of nor 0.5 and nor 0.1 - this can be seen by comparing the p-values
from Table 4.1. The p-values of the dataset without the first di↵erences are mostly
above an ↵ of 0.1 - which leads to not being able to reject a unit root process. The
rejection of the H0 is however possible with the dataset where the first di↵erences
were taken, given that all p-values were 0.01, hence all smaller than an alpha of 0.1.
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In light of these results, the decision of taking the first di↵erences of all the
datasets comes into place. Hence, all the datasets present in this paper, from Part 1
Dataset to Part 5 Dataset, have the first di↵erences taken - unless stated otherwise
in selected situations.

Table 4.1: Augmented Dickey Fuller Test

1y 2y 3y 4y 5y 7y 10y 15y 20y 30y

Results from Part1 Dataset
- without first di↵erences taken

Dickey � Fuller -1.5117 -1.617 -1.7744 -1.9557 -2.1252 -2.327 -2.3436 -2.2387 -2.2579 -2.6229

Lag order 15 15 15 15 15 15 15 15 15 15

p � value 0.7851 0.7405 0.6738 0.5971 0.5253 0.4399 0.4327 0.4772 0.4691 0.3146

Results from Part1 Dataset
- with first di↵erences taken

Dickey � Fuller -15.449 -16.985 -16.854 -16.611 -16.499 -16.529 -16.906 -17.652 -18.652 -18.742

Lag order 15 15 15 15 15 15 15 15 15 15

p � value 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Further, in a stationary process, the auto-correlation function (ACF) decays in
a very fast way. Whereas in a unit root process the ACF decays very slowly (and
linearly), which makes it di�cult to reject the H0 in the ADF test5.

Additionally, my decision to take the first di↵erences of the given dataset of
forward rates is in accordance with the previous literature on this topic, Lekkos
(2000), Lord & Pelsser (2006) and Lazarevic (2019). Lekkos (2000) used the first
di↵erences as this reduces the correlation between interest rates and allows the study
of the factors influencing interest rate movements.

4.2 Data Partition

As stated in Chapter 4 Section 1, the entire dataset selected comprises of a time series
between 2004 and 2020 of the AAA-rated bonds from the European area - the curve
taken into consideration is the forward curve and the selected points out of the yield
curve are the 1y, 2y, 3y, 4y, 5y, 7y, 10y, 15y, 20y and 30y maturities. This paper
is dividing this entire dataset into 5 parts for demonstration and argumentation
purposes.

The first part, Part 1 Dataset, is the entire dataset. This starts on the 6th of
September 2004 and ends on the 23rd of September 2020. The Part 1 Dataset will
be used to demonstrate that the first three PCs correspond to the shift, slope and
curvature of an yield curve in Chapter 5 Section 1.

The second part and the third part, Part 2 Dataset and Part 3 Dataset, have
been selected as in Lazarevic (2019). This has been done because this paper first
aims at replicating his results in Chapter 5 Section 2 - to thereafter expand them.
Consequently, Part 2 has the same time series as the dataset characterised by the
positive interest rate environment selected by Lazarevic - which in his paper from

5See Appendix B.1 for the ACF graphs of the time series with and without the first di↵erences
taken.

6The summary presented in Table 4.2, clearly, is the summary of all the original datasets - here
the first di↵erences are not taken.
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Table 4.2: Summary of statistics of forward interest rates of AAA rating EMU zone
member states 6

Parameter 1y 2y 3y 4y 5y 7y 10y 15y 20y 30y

Part 1 Dataset

Count 4088 4088 4088 4088 4088 4088 4088 4088 4088 4088

Mean 0.8060 0.9362 1.0903 1.2583 1.4289 1.7468 2.1194 2.4789 2.6353 2.7056

Std 1.5960 1.6224 1.6327 1.6362 1.6362 1.631506 1.6219 1.6026 1.576 21.5210

Kurtosis -0.5174 -0.8051 -1.0692 -1.2590 -1.3821 -1.4930 -1.4994 -1.4259 -1.3722 -1.3245

Skewness 0.9178 0.7304 0.5483 0.3934 0.2643 0.0678 -0.1183 -0.2549 -0.2828 -0.2199

Min -0.9100 -0.9700 -1.0000 -1.0100 -1.0000 -0.9400 -0.8200 -0.6300 -0.5100 -0.4300

Max 4.5400 4.7100 4.7400 4.730 4.7300 4.7400 4.7800 4.8700 4.9800 5.1800

25% -0.5900 -0.5600 -0.4700 -0.3300 -0.1700 0.1000 0.4700 0.8600 1.0700 1.2800

50% 0.1000 0.2500 0.4700 0.7400 1.0000 1.5150 2.1300 2.6900 2.8700 2.8000

75% 2.0825 2.2125 2.4000 2.63250 2.8900 3.2700 3.6700 3.9800 4.1000 4.1100

Part 2 Dataset

Count 853 853 853 853 853 853 853 853 853 853

Mean 3.0486 3.1778 3.2719 3.3619 3.4505 3.6138 3.8067 4.0075 4.1199 4.2353

Std 0.7787 0.7285 0.6556 0.5875 0.5294 0.4449 0.3767 0.3387 0.3323 0.3358

Skewmess 0.0625 0.0036 0.0119 0.0346 0.0522 0.0620 0.0459 0.0484 0.0912 0.1860

Kurtosis -1.5693 -1.4420 -1.3112 -1.1838 -1.0673 -0.8994 -0.8581 -1.0262 -1.0956 -1.0333

Min 1.9300 2.0000 2.1500 2.3300 2.5100 2.7800 3.0600 3.3500 3.5000 3.5900

Max 4.3100 4.4700 4.5100 4.5400 4.5500 4.5900 4.6400 4.7100 4.7800 4.9900

25% 2.2200 2.4300 2.6500 2.8600 3.0000 3.2500 3.5000 3.7300 3.8200 3.9300

50% 3.0800 3.3100 3.4300 3.4900 3.5400 3.6400 3.8100 4.0100 4.1400 4.2400

75% 3.8300 3.8500 3.8500 3.8600 3.8800 3.9400 4.0700 4.2800 4.4300 4.5300

Part 3 Dataset

Count 839 839 839 839 839 839 839 839 839 839

Mean -0.4424 -0.4261 -0.3645 -0.2610 -0.1313 0.1509 0.5263 0.9357 1.1516 1.3188

Std 0.2665 0.2665 0.2699 0.2759 0.2866 0.3195 0.3808 0.4592 0.4844 0.4392

Kurtosis -1.3708 -1.4233 -1.3762 -1.2123 -0.9488 -0.4204 -0.0240 0.1214 0.0536 -0.1967

Skewness 0.0827 0.0710 0.1676 0.2718 0.3458 0.4120 0.4877 0.5755 0.5313 0.1684

Min -0.9100 -0.9300 -0.8700 -0.7300 -0.6100 -0.4300 -0.1700 0.1200 0.2800 0.4400

Max 0.0200 0.0400 0.1700 0.3400 0.5500 0.9900 1.5800 2.2300 2.4900 2.4300

25% -0.7000 -0.6800 -0.6250 -0.5000 -0.3600 -0.0700 0.2900 0.6550 0.8550 1.0550

50% -0.4500 -0.4600 -0.4300 -0.3300 -0.1600 0.0800 0.4500 0.8600 1.0800 1.3000

75% -0.2400 -0.2000 -0.1400 -0.0300 0.1000 0.3600 0.7500 1.1900 1.4100 1.5600

Part 4 Dataset

Count 944 944 944 944 944 944 944 944 944 944

Mean -0.6909 -0.6744 -0.6073 -0.5083 -0.3938 -0.1608 0.1316 0.4441 0.6206 0.8020

Std 0.0736 0.0861 0.1269 0.1788 0.2313 0.3213 0.4117 0.4833 0.5150 0.5447

Kurtosis -0.0399 0.5873 -0.0044 -0.4479 -0.7542 -1.1203 -1.3295 -1.4068 -1.4111 -1.3963

Skewness -0.6752 -0.7810 -0.2083 -0.0808 -0.1366 -0.2833 -0.3872 -0.4392 -0.4574 -0.4698

Min -0.9100 -0.9700 -1.0000 -1.0100 -1.0000 -0.9400 -0.8200 -0.6300 -0.5100 -0.4300

Max -0.5600 -0.5100 -0.3100 -0.0900 0.1300 0.4800 0.8400 1.1500 1.3200 1.5000

25% -0.7400 -0.7200 -0.6800 -0.6500 -0.5900 -0.4800 -0.3000 -0.0700 0.0700 0.2200

50% -0.6800 -0.6600 -0.6100 -0.4900 -0.3500 -0.0600 0.3200 0.6900 0.8800 1.0700

75% -0.6300 -0.6100 -0.5200 -0.3875 -0.2400 0.0800 0.4600 0.8600 1.0700 1.2800

Part 5 Dataset

Count 1597 1597 1597 1597 1597 1597 1597 1597 1597 1597

Mean -0.5531 -0.5374 -0.4758 -0.3792 -0.2628 -0.0165 0.3052 0.6564 0.8480 1.0166

Std 0.2304 0.2331 0.2460 0.2710 0.3040 0.3750 0.4661 0.5582 0.5938 0.5849

Kurtosis -0.1875 -0.2857 -0.3414 -0.4183 -0.4432 -0.4133 -0.3114 -0.1662 -0.1939 -0.4844

Skewness 0.9910 0.9065 0.7254 0.4886 0.2832 0.0495 -0.0140 0.0542 0.0290 -0.2649

Min -0.9100 -0.9700 -1.0000 -1.0100 -1.0000 -0.9400 -0.8200 -0.6300 -0.5100 -0.4300

Max 0.0200 0.0400 0.1700 0.3400 0.5500 0.9900 1.5800 2.2300 2.4900 2.4300

25% -0.7100 -0.6900 -0.6500 -0.5900 -0.5000 -0.3200 -0.0600 0.2600 0.4400 0.6100

50% -0.6400 -0.6200 -0.5400 -0.4300 -0.3000 0.0100 0.3700 0.7500 0.9500 1.1400

75% -0.4200 -0.3900 -0.3200 -0.1800 -0.0500 0.2300 0.5900 0.9700 1.1700 1.3700
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2019 he refers to as ‘normal times’. Thence the Part 2 Dataset ranges from the
7th of September 2004 to the 31st of December 2007. Also the Part 3 Dataset has
been chosen accordingly to Lazarevic’s selection - the Part 3 Dataset corresponds
to his chosen negative interest rates environment sample. This ranges from the 6th
of June 2014 to the 21st of September 2017.

The fourth and fifth partitions are the datasets used to perform the extension
of Lazarevic’s findings that this thesis paper is undertaking. The Part 4 Dataset
includes the timeframe from the 1st of September 2017 to the 23rd of September
2020. The Part 5 Dataset includes the timeframe from the 6th of June 2014 to the
23rd of September 2020.

Each of these subsections of the entire dataset have di↵erent characteristics that
showcase the progressive downward shift of the entire yield curve. As it can be seen
in Table 4.2, the progressive shift into negative interest rates reached its peak with
the Part 4 Dataset. This is the case because in the Part 4 Dataset the 10y maturity
minimum touched a yield of -0.82%, the maximum touched a yield of 0.84% and
the mean amounted to a yield of 0.13%. Meaning that if an investor bought a 10y
AAA-rated bond within the euro area between 2017 and 2020, she or he would on
average receive only 0.13% of yield on her or his investment in 10 years from now.
An investment performed between 2014 to 2017 on a 10y AAA-rated bond within
the euro area, would on average instead yield 0.52%. Had the same investment been
performed between 2004 and 2007, it would have on average yielded 3.81%. The
average return of the investment on a 1y maturity AAA-rated bond dropped from
an average of 3.04% between 2004 to 2007, to an average of -0.44% between 2014
to 2017, to an average of -0.69% between 2017 and 2020. The current deposit rate
of the ECB is -0.50% - this means for example that a bank would actually lose on
average 19 basis points (bps) of money if it decided to invest in the 1y bonds markets
instead of simply depositing its liquidity at the Central Bank for one year of time
between 2019 and 20207.

Being that all the min-max ranges across all the maturities are positive in the
Part 2 Dataset - this is the dataset considered to be representative of a positive in-
terest rate environment. The min-max ranges across the curve in the Part 3 Dataset
have negative values in the min values up to the 10y maturities. The is even more
negative in the Part 4 Dataset. In this, the min-max ranges are completely nega-
tive from the 1y to the 4y maturities. Additionally, in the Part 4 Dataset, in the
min-max range of the very end of the curve, the 30y bond, has a min value touching
a negative value of -0.43% - hinting that some european yield curves within the
timeframe of 2017 to 2020 went actually entirely negative and entirely below zero8.

From the Figures 4.2, 4.3 and 4.4 respectively, it is possible to see the path of the
entire European term structure from 2004 to 2020. In the first one, it is for example
possible to notice the inversion of the curve between 2004 and 2007. The curve from
2007 is relatively flatter than the curve of 2004, which signals higher uncertainty
in the short term compared to the long term - this takes place usually in times of

7The deposit rate moved to -0.50% in 2019, see Table 4.3.
8This occurrence started for the first time in August 2019 with the German Yield curve.
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Figure 4.2: Yield curves of AAA-rated bonds in the European area from 2004 to
2020

Figure 4.3: Bond Maturities over time, from 2004 to 2020

Figure 4.4: Daily downward shift of the yield curve from 2004 to 2020
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crisis, as it was at the time. In this same graph there is the depiction of the several
downward shifts that the yield curve of the average of the AAA-rated bond had in
the last 15 years. In the Figure 4.3 the time series of the individual maturities is
illustrated and shown to have moved into the negative space for all maturities. Both
of these figures can be summarized with the surface graph in 4.4, where all yield
curve shifts are connected in the depicted surface. The more blue the surface, the
more near to 0 and to a negative interest rate space.

4.3 ECB’s policies: From positive to negative in-

terest rates

As I am writing this paper, since 2014, the euro area finds itself in the presence
of negative interest rates. This finds its explanation in the monetary policies that
the European Central Bank (ECB) put into place since the global financial crisis
of 2007-2008 and the European debt crisis that started at the end of 2009. It was
at the height of the European debt crisis and at the height of the spread of several
European bonds to the German Bund, that one of the most famous sentences from
a central banker marked the history of European and global economics. On the
26th of July 2012 Mario Draghi spoke the famous words “Whatever it takes” in a
speech where markets started a path to regaining confidence in the euro area. To
restore confidence in the Euro, confidence in European debt had to be restored -
this has been possible through a series of monetary policy decisions that tackled the
Deposit Facility Rate, access to liquidity, and open market operations that could
consequently tackle and lower the yields of European public debt markets.

Figure 4.5: The monthly target of the APP and the cumulative net purchases of the
APP by programme 9

The channels of action that the ECB can undertake include setting the key
interest rates (such as the deposit interest rate) as well as quantitative easing mea-
sures (or ‘non-standard monetary policy measure’). In Table 4.3 the rate cuts and
hikes that the ECB performed since 2002 up to now are to be found - noting that
the deposit facility rate started to be set as negative since 2014. Additionally, in
order to ensure liquidity in the markets and to prevent interest rates to spike up
again, the ECB started in 2014 to implement a ‘non-standard monetary policy mea-
sure’ of quantitative easing, called the APP, the asset purchase programmes. The

9Source: ECB.
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APP doesn’t involve only government bonds (the public sector purchase programme,
PSPP), but also corporate bonds (corporate sector purchase programme, CSPP), as
well as asset-backed securities (ABSPP) and covered bonds (CBPP3). Figure 4.5
shows the amount of APP in cumulative terms since 2015 for the net purchases -
the amount of liquidity that this programme contributed to the markets is of the
significant sum of about 3000 billion euros.

As it can be seen from Table 4.3, the ECB decided to cut rates gradually from
2012 to 2019 from 0 to negative fifty basis points - this accommodating policy was
chosen in order to provide a great deal of more support for the markets and the
economy, with the intention to push the transmission mechanism by helping banks
have cheaper access to liquidity and ensuring this access to liquidity was given to
consumers, who then would spend, and so on. However, an over-accommodating
monetary policy can come with frictions as well. Due to regulatory requirements,
European banks need to have a set amount of reserves deposited at the ECB - this
compulsory requirement comes at a cost when banks have to pay to deposit these
reserve requirements. This has seemed to be a bottleneck for the aforementioned
transmission mechanism to function. Given this, in September 2019 a two-tier

system was introduced, where European banks can have a part of their deposited
excess reserves, under some given conditions, at a 0% interest rate instead of the
disadvantageous -0.50% rate.

Table 4.3: ECB Deposit Facility Rate from 2004 to 2020

Date Deposit Facility

2019 18 Sep. -0.50

2016 16 Mar. -0.40

2015 9 Dec. -0.30

2014 10 Sep. -0.20

11 Jun. -0.10

2012 11 Jul. 0.00

2011 14 Dec. 0.25

9 Nov. 0.50

13 Jul. 0.75

13 Apr. 0.50

2009 8 Apr. 0.25

11 Mar. 0.50

21 Jan. 1.00

2008 10 Dec. 2.00

12 Nov. 2.75

9 Oct. 3.25

8 Oct. 2.75

9 Jul. 3.25

2007 13 Jun. 3.00

14 Mar. 2.75

2006 13 Dec. 2.50

11 Oct. 2.25

9 Aug. 2.00

15 Jun. 1.75

8 Mar. 1.50

2005 6 Dec. 1.25

2003 6 Jun. 1.00

7 Mar. 1.50

2002 6 Dec. 1.75

Source: ECB.
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After this, in March 2020 the global pandemic caused by the Covid-19 (known
as Corona Virus) hit Europe and the US alike as well as the entire world - this
caused a panic in the markets that a↵ected the entire stock markets and bond mar-
kets alike. The prompt intervention of the ECB has been the Pandemic Emergency
Purchase Programme (PEPP) - the entire envelope of this programme is of 1.350
billion euros to date. Not only this, but in light of the pandemic the ECB has
also generously set an exclusively accommodating interest rate for the TLTRO III10

operations between June 2020 and June 2021. In this time-frame, banks getting
loans from the TLTRO III window will not be borrowing at -0.50% but rather
at 50 basis points cheaper, i.e. at -1.0%. Furthermore, there is the expectation
that an accommodating monetary policy will continue not only due the pandemic
and the demand and supply shock that this caused, but also due to the fact that
the ECB has been struggling to fulfill its mandate (an inflation close but below 2%).

All the monetary policy measures that have been mentioned here ensure a level
of liquidity in the markets that keeps the front end and most of the yield curve
anchored negatively. This can be seen also from the downward shift of the entire
yield curve that took place between 2014 and 2020 - see aforementioned Figure 4.4
for reference.

10The first series of targeted longer-term refinancing operations was announced in June 2014.
The second in march 2016, and the third in March 2019. The TLTROs are another instrument, like
the APP and PEPP, that the ECB can use in order to preserve favourable borrowing conditions
and stimulate bank lending to the real economy.
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Empirical Results

5.1 Shift, Slope and Curvature

In this section, the paper will demonstrate what was presented in the section 2.1.
As exposed in Chapter 2.1, previous literature a�rms that the first three principal
components represent the shift, slope and curvature of the yield curve and that these
three components alone can explain the vast majority of the yield curve variability.
This is shown empirically to be the case also from the correlation between the PC1
and the shift, PC2 and the slope and PC3 and the curvature. The dataset used in
this section is the Part 1 Dataset.

The fact that the first 3 PCs represent the vast majority of the yield curve vari-
ability can be shown by the Table 5.1. The first 3 PCs alone can explain together
already more than 90% of the total variance. As shown in the table below, the
first 3 PCs are representing 92.353% of the total variability. This is a satisfactory
percentage given that the PCA calculation led to a total of 10 principal components.

Table 5.1: PCA results from Part 1 Dataset

Variables PC1 PC2 PC3 PC4

1y 0.26967 0.422346 0.1681428 0.56076

2y 0.30679 0.455693 0.0814210 0.19191

3y 0.33502 0.338424 -0.0390552 -0.16647

4y 0.34984 0.183643 -0.1423547 -0.32499

5y 0.35111 0.040809 -0.2310796 -0.34277

7y 0.33817 -0.173813 -0.3599548 -0.16261

10y 0.30842 -0.357454 -0.3746351 0.25289

15y 0.30561 -0.408218 -0.0018212 0.41612

20y 0.31537 -0.326600 0.4145866 0.08241

30y 0.27005 -0.180976 0.6694075 -0.35715

Eigenvalues 7.15358 1.29855 0.78319 0.53229

Proportion of V ariance 71.54% 12.98% 7.832% 5.323%

Cumulative V ariance 71.54% 84.52% 92.353% 97.676%

Next, in order to demonstrate these correlations, we need to identify the con-
cepts of shift, slope and curvature with actual data coming from the yield curve.
Shift, slope and curvature can visually be identified with the 10y maturity, the 2y10y
spread and the 7y15y30y butterfly spread.

The concept of shift can be visualised with the 10y maturity. This is because
with the term shift it is meant the shift of the entire yield curve. If the front end
(the front end part of the curve means the short term maturities) and the long end
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Figure 5.1: Plotting of the first 3 PCs from the Part 1 Dataset - Results from Table
5.1

(the longer term maturities) shift lower and lower, the 10y maturity and the rest of
the curve will shift accordingly. Being the 10 year maturity here in the “middle” of
the curve and one of the most liquid points out of the yield curve, this will be the
maturity chosen to represent the shift of the yield curve.

The concept of slope can be visualised with the 2y10y spread. A spread is the
di↵erence between two financial assets, here bonds and their yields. The spread
considered for the slope is the common 2y10y spread. This is calculated by the 10
years yield minus the 2 years yield. The term slope has been referred to in previous
literature also as steepness. With this kind of spread, “steepener” or “flattener”
trades are possible. A “steepener” trade would be a trade where the front end is
bought and the long end is sold, because the bet is that the curve would steepen. A
“flattener” trade is a trade where the front end is sold and the long end is bought,
because the bet is that the curve would flatten or invert.

The concept of curvature can be visualised with the 7y15y30y “butterfly” spread.
A butterfly spread in financial terms is the spread within a butterfly trade. A but-
terfly trade consists of picking two points on the curve and selling (buying) them
while simultaneously picking a point between these two and buying (selling) it. The
former trade is performed if one is betting that the curve in the chosen part of the
curve’s curvature is going to look more convex. The latter is performed if one is
betting that the chosen part of the curve’s curvature is going to look more concave.
The butterfly trade can be expressed in any part of the curve – but the butterfly
spread chosen here is to express the curvature of the entire curve, hence the picked
butterfly spread here is the 7y15y30y spread. This is calculated by multiplying the
15 years yield by two and subtracting the 7 years yield and the 30 years yield.
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Table 5.2: Correlations in absolute value of PC1, PC2, PC3 with SSC

PC1 and PC2 and PC3 and 7y15y30y
10y 2y10y spread Butterfly spread

Corr 0.81090 0.82205 0.65252

As it can be seen from Table 5.2, the correlations in absolute value between
these pairs is higher than 0.5 - which illustrates how the PC1 represents the shift,
the PC2 represents the slope and the PC3 represents the curvature of the yield curve.

Figure 5.2: First three PCs with 10y bond, 2y10y spread and 7y15y30y spread1

Figure 5.3: First three PCs loadings2

Additionally, this can also be noted visually from Figure 5.2. Lastly, also here
it’s implied that the sign changes can be an additional characteristic towards the
SSC pattern. As it can be seen from Figure 5.3, the loading of the PC1 shows no
sign changes while the loading of PC2 leads to 1 sign change and the loading of
PC3 to 2 sign changes. This also is a hint towards the shift, slope and curvature
associations.

1These graphs come from the principal component analysis applied on the entire dataset without
taking the first di↵erence. Although stationarity is not ensured in this case, these graphs are more
communicative for illustration purposes to depict the correlation between the aforementioned pairs.
In the Appendix B.2 there are the graphs of the analysis from the PCA applied to the actual Part
1 Dataset - which has the first di↵erences taken, hence with ensured stationarity.

2These graphs come from the principal component analysis applied on the entire dataset with
the first di↵erence taken, hence with ensured stationarity.
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5.2 Positive Interest Rates Environment vs Neg-

ative Interest Rates Environment

This section will first tackle the replication of Lazarevic’s work from his 2019 pa-
per “Principal Component Analysis in Negative Interest Rate Environment”. This
first replication aims to show what was discussed in Chapter 2.2. The replication of
Lazarevic’s work is performed with Part 2 and 3 Datasets. After this, the application
of PCA to the average of AAA-rated bonds of the european area will be extended
to the time frame of 2017-2020 with the Part 4 Dataset and to the timeframe of
2014-2020 with the Part 5 Dataset.

Replication of Lazarevic (2019) results

As it can be seen from Table 5.3 and Table 5.4 - the results are successfully replicated
and meet the expectations set by Lazarevic (2019). Within the positive interest rate
environment between 2004 and 2007, the cumulative explained variance from the
first 3 PCs is higher than 95%, amounting to 97.265%. As expected and as shown
previously by Lazarevic, the Part 2 Dataset does not require the consideration of an
additional PC to reach a cumulative explained variability of 95%. The ‘oscillatority’
term, the fourth PC, is hereby not necessary. Lazarevic refers to the 4th PC as the
‘oscillatority’ given its 3 sign changes.

Table 5.3: PCA results from Part 2 Dataset - Positive Interest Rate Environment

Variables PC1 PC2 PC3 PC4

1y 0.27491 0.3563383 0.460318 -0.582079

2y 0.31107 0.3295822 0.355936 0.037902

3y 0.33501 0.3031091 0.086143 0.339697

4y 0.34095 0.2543300 -0.180909 0.335170

5y 0.33715 0.1773714 -0.370480 0.190018

7y 0.33061 -0.0026005 -0.491468 -0.220174

10y 0.33225 -0.2255638 -0.298368 -0.456511

15y 0.31298 -0.3978525 0.084421 -0.150122

20y 0.29481 -0.4277243 0.242614 0.126800

30y 0.28451 -0.4292532 0.295738 0.316884

Eigenvalues 7.18754 1.72461 0.81438 0.16566

Proportion of V ariance 71.88% 17.25% 8.144% 1.657%

Cumulative V ariance 71.88% 89.12% 97.265% 98.922%

Table 5.4: PCA results from Part 3 Dataset

Variables PC1 PC2 PC3 PC4

1y 0.20255 -0.5042000 -0.532377 -0.458625

2y 0.27687 -0.5110871 -0.028416 -0.016598

3y 0.32635 -0.3293045 0.208593 0.246288

4y 0.35167 -0.1557367 0.226657 0.296576

5y 0.35955 -0.0073399 0.191564 0.243467

7y 0.358222 0.1464340 0.148080 0.017921

10y 0.34398 0.2443458 0.166538 -0.319965

15y 0.33001 0.2900994 0.087689 -0.439257

20y 0.32831 0.3286593 -0.216936 -0.155194

30y 0.24400 0.2801799 -0.692657 0.511630

Eigenvalues 7.08194 1.48939 0.73575 0.40496

Proportion of V ariance 70.82% 14.89% 7.357% 4.05%

Cumulative V ariance 70.82% 85.71% 93.071% 97.12%

As expected and shown previously by Lazarevic (2019), the Part 3 Dataset does
instead require an additional PC to reach an as satisfactory amount of cumulative
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explained variance. The first three PCs explain only the 93.071% of total variability.
In order to achieve at least 95% the ‘oscillatority’ term, the fourth PC, should in
this case be taken into consideration.

Extension of Lazarevic (2019) results

The same calculations performed in R that led to the results from Tables 5.3 and
5.4 have been applied to the Part 4 and 5 Datasets to produce the results displayed
in the Tables 5.5 and 5.6.

As shown in Chapter 4, in the Part 4 Dataset (timeframe of 2017 to 2020) there
lies an even deeper negative interest rates environment compared to the Part 3
Dataset (timeframe of 2014 to 2017). This can be numerically seen by comparing
the lower mean and lower min values that the Part 4 Dataset entails compared to
the Part 3 Datasets in the Table 4.2. Furthermore, this can also be visually seen in
Figure 4.4: the green yield curve from 2014 and the violet yield curve from 2017 lie
above the fuchsia and yellow yield curves from 2019 and 2020 respectively.

As a consequence, given Lazarevic (2019) argumentation, there is the expectation
that the results from Part 4 and 5 Datasets also lead to a cumulative explained
variance of the first three PCs to be lower than 95%. This has not been found to
be the case.

Table 5.5: PCA results from Part 4 Dataset

Variables PC1 PC2 PC3 PC4

1y 0.24607 0.42116 -0.67312 0.39692

2y 0.30348 0.40775 -0.20302 -0.26325

3y 0.32474 0.31478 0.13716 -0.36450

4y 0.33335 0.22051 0.32235 -0.18603

5y 0.33946 0.12558 0.37802 0.07144

7y 0.34212 -0.04953 0.31829 0.39065

10y 0.33624 -0.22651 0.08085 0.47839

15y 0.32003 -0.35240 -0.15144 0.08210

20y 0.31022 -0.38824 -0.21516 -0.18874

30y 0.29461 -0.40526 -0.25097 -0.420347

Eigenvalues 7.708571 1.41973 0.541584 0.190582

Proportion of V ariance 77.09% 14.20% 5.416% 1.906%

Cumulative V ariance 77.09% 91.28% 96.699% 98.605%

Table 5.6: PCA results from Part 5 Dataset

Variables PC1 PC2 PC3 PC4

1y 0.22483 -0.47526 -0.57485 0.38614

2y 0.29018 -0.47185 -0.10984 0.01369

3y 0.32697 -0.32616 0.17689 -0.20654

4y 0.34565 -0.17936 0.27108 -0.26404

5y 0.35331 -0.04515 0.27529 -0.21551

7y 0.35258 0.12336 0.22546 0.00124

10y 0.33948 0.24611 0.15667 0.34876

15y 0.32447 0.31354 0.01507 0.44015

20y 0.32082 0.35559 -0.22783 0.11709

30y 0.25742 0.33221 -0.59110 -0.60234

Eigenvalues 7.27230 1.47897 0.63724 0.35794

Proportion of V ariance 72.72% 14.79% 6.372% 3.579%

Cumulative V ariance 72.72% 87.51% 93.885% 97.464%

The cumulative explained variance of the first three PCs from the Part 4 Dataset
amounts to almost 97%. This leads to the needlessness of taking also the oscilla-
tority factor into consideration. This finding does not meet the expectation - but
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further analysis has been pursued to consider the entirety of the negative interest
rate environment dataset since its start (2014 to 2020). Hence, the same calcula-
tions have been applied to the Part 5 Dataset and the findings are interesting as
they contradict the findings resulting from the 4 Dataset.

In Table 5.6, it can be seen that the cumulative explained variance of the first
three PCs does not meet 95% but 93.885% instead. In this case, the fourth PC
does have to be taken into consideration to ensure a higher proportion of explained
variance, to meet the same e�cacy of PCA applied to the positive interest rates
environment.

Table 5.7: Explained Variances in Comparison

PC1 PC2 PC3 PC4

Results from Part 2 Dataset
- the positive interest rate environment

Eigenvalues 7.18754 1.72461 0.81438 0.16566
Proportion of Variance 71.88% 17.25% 8.144% 1.657%
Cumulative Variance 71.88% 89.12% 97.265% 98.922%

Results from Part 3 Dataset
- the negative interest rate environment

Eigenvalues 7.08194 1.48939 0.73575 0.40496
Proportion of Variance 70.82% 14.89% 7.357% 4.05%
Cumulative Variance 70.82% 85.71% 93.071% 97.12%

Results from the Extension Part 4 Dataset
- negative interest rate environment

Eigenvalues 7.708571 1.41973 0.541584 0.190582
Proportion of Variance 77.09% 14.20% 5.416% 1.906%
Cumulative Variance 77.09% 91.28% 96.699% 98.605%

Results from the Extension Part 5 Dataset
- negative interest rate environment

Eigenvalues 7.27230 1.47897 0.63724 0.35794
Proportion of Variance 72.72% 14.79% 6.372% 3.579%
Cumulative Variance 72.72% 87.51% 93.885% 97.464%

As shown, the results from the Part 4 Dataset do not meet the expectations
but the results from the 5 Dataset do. This is rather contradictory given the fact
that on average the Part 5 Dataset is less negative than the Part 4 Dataset - this
can be seen numerically by comparing the means in Table 4.2. As a consequence,
this leads to the question whether it is the negativity of interest rates itself that
determines the lower explained variability seen with the Part 3 Dataset. Had the
negativity of interest rates been the cause for this, a lower amount of variability
would have applied also to the results from the Part 4 Dataset. As it did not apply,
this leads to the suggestion that there are some idiosyncratic characteristics in the
Part 3 Dataset, other than the negativity of interest rates, that influence a lower
explained variability of the first three PCs.
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Conclusion

PCA is a dimensionality reduction technique that can be applied to the term struc-
ture to describe an entire interest rates market with only a few factors, while still
explaining the majority of the variability of the original dataset. From previous
literature these hae been considered to be the shift for the first PC, the slope for
the second PC and the curvature for the third PC (SSC).

This research is able to empirically show that the SSC holds and that it be can
graphically modelled as a long end rate (here the 10y maturity for the first PC), the
2y10y spread (for the slope, i.e. the second PC) and the 7y15y30y butterfly spread
(for the curvature, i.e. the third PC).

Previous literature (Lazarevic, 2019) researched about whether the SSC pattern
can still be found in a negative interest rate environment. Though this has been
found to be the case, the amount of variability explained by the first three PCs seems
to have been unfavourably impacted by the presence of negative interest rates. With
regards to the e�cacy of PCA applied to the term structure, given the previous
literature (Lazarevic, 2019), the expectation was that the Part 4 and 5 Datasets
would result in a similar outcome as the previous literature showed. Meaning that
the amount of variability explained by the first three PCs in both of these Datasets
would be lower than the amount of explained variability of the first three PCs from
a positive interest rates sample (here, Part 2 Dataset).

However, this expectation has not been met from the analysis resulting from
the Part 4 Dataset. Contrarily, this has been found to be the case for the Part 5
Dataset. The fact that a lower (in respect to the positive interest rate environment
in the Part 2 Dataset) explained variability of the first 3 PCs results from the Part 3
Dataset and not the Part 4, makes this a contradictory outcome. This contradictory
outcome leads and results in questioning whether the negativity of interest rates is
the actual cause for a lower explained variability of the first 3 PCs resulting from
the Part 3 Dataset, which instead suggests an idiosyncrasy within the Part 3 Dataset.

The conclusion of this research regarding the e�cacy of PCA for the term struc-
ture in a negative interest rate environment is that the negativity of interest rates
might actually not a↵ect the amount of variability explained by the first three PCs.
Although the research’s results from the previous literature indicates this to be the
case, here this is not. The e�cacy in a very deeply negative interest rate environ-
ment (in Part 4 Dataset the cumulative explained variance from the first three PCs
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is 96.69%) is found to be as high as the e�cacy of PCA in a positive interest rate
environment (in Part 2 Dataset the cumulative explained variance from the first
three PCs is 97.27%). This suggests that the presence of other idiosyncratic charac-
teristics of a specific time series might a↵ect the e�cacy of PCA as an instrument
applied to the term structure.
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Appendix A

PCA

A.1 Principal Components Derivation

The main idea of principal component analysis is to reduce the dimensionality of
the dataset forming new combinations of the existing variables. The first PC is the
linear combination with maximal variance. The second PC is the linear combination
with maximal variance in a direction orthogonal (90 degrees) to the first principal
component, and so on (Rencher, 2012). The orthogonality of the eigenvectors is
an important assumption, because it makes it possible to decompose the covariance
matrix into uncorrelated relationships.

Figure A.1: Orthogonal vectors1

The following proofs have been selected from Joli↵e (2002). A n ⇥ k Matrix X
and a k ⇥ 1 vector ↵i are given. A Principal component can come into place as a
linear combination of all the features where the weights are given by the elements
of ↵i. The kth principal component (PC) is given by

zk =↵
0
k x = ↵

0
k1 x2 + ↵

0
k3 x3 + ... + ↵

0
kp xp =

Pp
j=1↵

0
kj xj

Given that the first principal component has to be the one with the highest
variance, the first PC comes into place from an optimization problem:

max : var(zk) = var(↵0
kx) s.t. ↵

0
1↵1 = 1

The maximization of the first PC presents itself as:

max : var(z1) = var(↵0
1x) s.t. ↵

0
1↵1 = 1

1Source of this picture: Rencher (2012, page 384).
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PCA applied to the Term Structure

Which, given that ⌃ is the covariance matrix of X, is equivalent to:

max : ↵0
1⌃↵1 s.t. ↵

0
1↵1 = 1

From this, it follows a Lagrange:

L = ↵
0
1

P
↵1 � � (↵0

1↵1 � 1)
@L
@↵1

=
P

↵1 � �↵1 = 0
(
P��I)↵1 = 0P
↵1 = �↵1 | ·↵0

1

↵
0
1

P
↵1 = ↵

0
1�↵1 = �↵

0
1↵1 = �1

To decide which of the eigenvectors p gives the max variance of zk = ↵
0
kx, the

quantity to be maximised is
P

↵1, so �1 must be as large as possible.

Also the problem of the second PC is a maximisation problem, just with an
additional optimization constraint: that the the second PC is uncorrelated with the
first PC, otherwise they would entail parts of the same information baggage, which
is not what we aim for in PCA. Orthogonality ↵

0
1↵2 = ↵

0
2↵1 = 0 here is actually

mathematically also necessary to ensure that the covariance between the first and
the second eigenvectors is 0 - hence to ensure that these are uncorrelated also means
to ensure orthogonality. The maximization of the second PC presents itself as:

max : ↵0
2⌃↵2 s.t. cov [↵0

1x,↵
0
2x] = 0 & s.t. ↵

0
2↵2 = 1

However, we know that in order for the following to hold:

cov [↵0
1x,↵

0
2x] = ↵

0
1⌃↵2 = ↵

0
2⌃↵1 = ↵

0
2�↵

0
1 = �1↵

0
2↵1 = �1↵

0
1↵2 = 0

...it has to hold also orthogonality so that: ↵
0
1↵2 = ↵

0
2↵1 = 0. Which turns our

optimization problem for the second PC into:

max : ↵0
2

P
↵2 s.t. ↵

0
2↵2 = 1,↵0

2↵1 = 0
L = ↵

0
2

P
↵2 � � (↵0

2↵2 � 1)� � (↵0
2↵1 � 0)

@L
@↵2

=
P

↵2 � �↵2 � �↵1 = 0

From this, to understand what value � has, we multiply on the left for ↵0
1:

@L
@↵2

=
P

↵2 � �↵2 � �↵1 = 0 | ·↵0
1

↵
0
1

P
↵2 � �↵

0
1↵2 � ↵

0
1�↵1 = 0

Here we know from above the first two terms to be zero - hence the third term must
be zero. For the third term to be zero, � has to be zero. Which leads to:

P
↵2 � �↵2 = 0P
↵2 = �↵2

(⌃� �I)↵2 = 0
�2 = ↵

0
2

P
↵2

This means that �2 has to be as large as possible. Assuming that ⌃ does not
have repeated eigenvalues, then �2 cannot equal �1. If it did, then also ↵2 = ↵1,
which would violate ↵

0
1↵2 = 0. This means that the second PC has the second

largest variance.
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PCA applied to the Term Structure

As a consequence, ↵k is an eigenvector of the covariance matrix ⌃ corresponding
to its kth largest eigenvectors. Also, ↵k is chosen to have unit length of ↵0

k ↵k = 1
so that var(zk) = �k.

This is the case because the variances of the PCs are related to the eigenvalues.
This can be seen from the following.

The variance-covariance Matrix ⌃ is always symmetric and always semi-positive
definit. The properties that unfold from these charachteristics are that: all eigenval-
ues are positive, the eigenvectors are orthogonal (uncorrelated), there is a full set of
eigenvalues with corresponding eigenvectors (meaning that there are as many PCs
as variables in the dataset X).

Given these, the covariance matrix can be ‘broken’ into three other parts. This
is called spectral decomposition. The first part, V , is a k ⇥ k matrix with all the
eigenvectors as columns, the second part ⇤ is a diagonal k ⇥ k matrix with all
eigenvalues as diagonal elements and the third part is the matrix V transposed:

⌃ = cov(X) = V ⇤V 0

Furthermore, ⌃ = V ⇤V 0 can be rewritten as V 0⌃V = (V 0
V )⇤(V 0

V ) = I ^ I = ⇤
and the PC, �, is given by � = XV . The PCs that result from this are in the n⇥ k

matrix �, as X is a n⇥k and V is a k⇥k matrix. As stated above, there are always
as many PCs as variables in the dataset X.

It follows that the variance of the PCs are related to the eigevalues:

var(�) = var(XV ) = V
0⌃V = ⇤
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Appendix B

Graphs

B.1 ACF Graph

These are the Autocorrelation Graphs referred to in Chapter 3.1

Figure B.1: Autocorrelation functions within the Part 1 Dataset bond time series -
without the first di↵erences taken
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PCA applied to the Term Structure

Figure B.2: Autocorrelation functions within the Part 1 Dataset bond time series -
with the first di↵erences taken

B.2 SSC graph with stationary dataset

This is the graph referred to in Figure 5.2 These are the graphs that come from
calculations from the Part 1 Dataset - which has the first di↵erences taken, hence
with ensured stationarity.

Figure B.3: First three PCs with 10y bond, 2y10y spread and 7y15y30y spread
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